Journal of Organometallic Chemistry, 372 (1989) 187-188 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09889

⁷³Ge NMR spectra of 1,3-dioxa-6-aza-2-germacyclooctanes

Ē. Kupče, E. Lukevics *,

Institute of Organic Synyhesis, Latvian SSR Academy of Sciences, Riga 226006 (U.S.S.R.)

O.D. Flid, N.A. Viktorov and T.K. Gar

Institute of Chemistry and Technology of Organoelemental Compounds, Moscow (U.S.S.R.)

(Received February 23rd, 1989)

Abstract

The spirocyclic derivatives of 1,3-dioxa-6-aza-2-germacyclooctanes (II) have been studied by ⁷³Ge NMR spectroscopy. Evidence for the existence in II of a transannular donor-acceptor $N \rightarrow Ge$ bond is presented.

Until recently the only derivatives of pentacoordinate Ge studied by ⁷³Ge NMR were the germatranes ROGe(OCH₂CH₂)₃N (I) containing an intramolecular donor-acceptor (DA) N \rightarrow Ge bond [1,2]. Here we report ⁷³Ge NMR study of the bicyclic analogues of I, i.e. 1,3-dioxa-6-aza-2-germacyclooctanes (germocanes, II).

$$R \xrightarrow{O}_{O} Ge \xrightarrow{O}_{O} X = (CH_{2})_{2};$$

$$(I: X = (CH_{2})_{2};$$

$$2: X = (CMe_{2})_{2};$$

$$3: X = o-C_{6}H_{4};$$

$$4: X = (CH_{2}CH_{2})_{2}O) \left\{ \begin{array}{c} a: R = H \\ b: R = Me \\ c: R = Pr^{i} \end{array} \right\}$$
(II)

An increase in ⁷³Ge shielding in derivatives of II (see Table 1), as compared to that observed for the model compound $Ge(OEt)_4$ [3], provides evidence for the existence of a transannular DA N \rightarrow Ge bond in II in solution. This agrees well with the results of an X-ray diffraction study of crystalline 1b in which the distance between the N and Ge atoms is decreased to 2.159 Å [4]. Substitution of the H atom at N by a Me or Prⁱ group does not appreciably affect the ⁷³Ge shielding and, consequently the DA N \rightarrow Ge bond strength.

The insignificant upfield shift of the ⁷³Ge resonance in **2b** compared with that of **1b** is attributable to the inductive effect of the Me groups in the β -position which is consistent with the effects observed in tetraalkoxygermanes [3]. A similar effect is observed for compound **3b**, but the lack of ⁷³Ge data for the appropriate model compounds prevents definite conclusions to be drawn.

compounds ^a	oxa-6-aza-2-germacyclooctanes (11)) in CD ₃ CN at 343	K and for	model
Compound	δ ⁷³ Ge	$\Delta v_{1/2}$		
1a	- 57	280		

320

500

170

150

240

30

165

- 55

- 56

- 57

- 82

- 94

- 44

-68

73 -

^a Chemical shifts (δ) in ppm relative to Me₄Ge, linewidth at half-height ($\Delta \nu_{1/2}$) in Hz. ⁷³Ge NMR spectra were recorded on a Bruker WM-360 spectrometer at 12.56 MHz in 5-mm sample tubes. ^b In DMSO-d₆. ^c Ref. 3. ^d In CDCl₃, ref. 1.

Decreased ⁷³Ge shielding in the series 1 and 2, as compared to the alkoxy derivatives of I (δ^{73} Ge = -60 to -68 ppm [1,2]), suggests a stronger DA N \rightarrow Ge bond in compounds I. However, the differences in the conditions under which ⁷³Ge spectra were recorded must be taken into account.

A substantial increase in 73 Ge shielding in compound 4a is indicative of a pseudohexacoordinate Ge resulting from additional 1,5-transannular $O \rightarrow Ge$ bonding. At present, unambiguous interpretation of the results obtained is not possible because of insufficient information regarding the influence of ring size on the 73 Ge chemical shifts.

The strong temperature dependence of the ⁷³Ge linewidth is also indicative of the existence of DA $N \rightarrow Ge$ bonding in II. For most of the II derivatives the linewidth at half-height of the ⁷³Ge resonance was ca. 200 Hz (see Table 1) and was found to rise with fall in temperature. Only compound 4a gave ⁷³Ge signals at ambient temperature in DMSO- d_6 solution. The enhanced asymmetry of the charge distribution around Ge in the pentacoordinate state results in an increase in quadrupolar relaxation rate of the ⁷³Ge nuclei, thus no ⁷³Ge signals were observed for the other compounds at ambient temperature in DMSO- d_6 .

Consequently, the ⁷³Ge NMR data favour the existence of an intramolecular $N \rightarrow Ge$ coordination bond in 1,3-dioxa-6-aza-2-germacyclooctanes in solution.

References

- 1 G.I. Zelčans, A.F. Lapsina, I.I. Solomennikova, E. Lukevics, E.E. Liepinš, and E.L. Kupče, Zh. Obshch. Khim., 53 (1983) 1069.
- 2 V.A. Pestunovich, S.N. Tandura, B.Z. Shterenberg, N.Yu. Khromova, T.K. Gar, V.F. Mironov, and M.G. Voronkov, Izv. Akad. Nauk SSSR, Ser. Khim., (1980) 959.
- 3 E. Liepins, I. Zicmane, and E. Lukevics, J. Organomet. Chem., 341 (1988) 315.
- 4 N.A. Viktorov, S.N. Gurkova, A.I. Gusev, T.K. Gar, and V.F. Mironov, Metalloorg. Khim., 1 (1988) 715.

1b 1c

2b

3Ь

4a b

Ge(OEt), °

N(CH₂CH₂O)₃GeOEt ^d

Table 1